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We study the band-random-matrix model for conservative Hamiltonian systems, originally proposed
by Wigner in 1955. On the basis of numerical data we show that both the global structure of eigenstates
and the level statistics obey a simple scaling law based on a single scaling parameter.
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The first attempt to describe statistical properties of
complex quantum systems by means of a random matrix
model goes back to Wigner [1]. He introduced a band-
random-matrix (BRM) model to describe conservative
systems like atomic nuclei [2]. Specifically, he considered
an ensemble of real, infinite, Hamiltonian matrices of the
type

Hm,,Z%S F Vs Vi =V - (1

mn mn

Here, p is the mean level density. The off-diagonal ma-
trix elements are random and statistically independent,
with (v,,,>=0 and (v2,)=v? for |m—n|<b, while
V,,, =0 otherwise; b is the bandwidth. In particular, the
simplest case of matrix elements with random signs
V,,n = v was chosen in [1].

Wigner introduced the weighted level density

pw(E;m)=3 a2, 8E—E,), (2)
!

where a,,; are components of the eigenfunctions ¥, of the
Hamiltonian (1) in the physically significant unperturbed
basis {@,, }:

V=23 mPm > (3)

and E, are eigenvalues corresponding to ;.

The weighted level density py (E;m), termed strength
function by Wigner, proved very useful in studies of
quantum statistics, and is now called local spectral density
(see, e.g., [3]). It characterizes the level density of the so-
called operative eigenfunctions [4], which actually control
the dynamics of the initial state ¢,, .

The analytical evaluation of the density (2) turned out
to be extremely difficult. Only in some limit cases was
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Wigner able to derive an explicit expression for it. In
particular, for p= o0 and b >>1, he obtained the semicir-
cle law

1
47v2b

(rigorous proofs of the semicircle law are given in recent
papers [5]).

After Wigner’s pioneering work, BRM’s were almost
forgotten (curiously enough by Wigner himself [6]), ap-
parently because of their mathematical inconvenience,
namely, noninvariance with respect to basis rotation.
Due to this, attention was paid mainly to full random ma-
trices for which a fairly complete mathematical analysis
has been developed [7]. However, full random Hamil-
tonian matrices can be used to describe only local statisti-
cal properties of spectra and were criticized by Dyson be-
cause of the “‘unphysical” semicircle law.

A physically meaningful approach to the analysis of
global properties of Hamiltonian systems can be obtained
by just going back to the original Wigner model with in-
creasing diagonal elements (1). In this model the semicir-
cle law holds for the weighted level density (2) only, while
the total level density is approximately uniform in the
semiclassical region. Moreover, in physical applications,
the interaction of unperturbed states always has a finite
range which determines the band structure of Hamiltoni-
an matrices. For this reason, there has been a revival of
interest in BRM’s [8]. Particularly, in Refs. [9,10] spec-
trum statistics and the structure of eigenstates have been
studied in the original Wigner model (1). Another source
of interest in BRM’s is related to solid-state physics
where band matrices are widely used to describe dynam-
ics of electrons in disordered solids. Here, the localiza-
tion properties of eigenstates are important as well as

pw(E;m)= V/'8bv2—E? @)
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their relation to the spectrum properties.

In this paper we consider the model of infinite BRM’s
of type (1) with Gaussian distribution for off-diagonal ele-
ments. On the basis of numerical data [9,10] we show
that the global structure of eigenfunctions can be de-
scribed by a simple scaling theory based on a single scal-
ing parameter which has a simple physical meaning. A
similar scaling approach accounts very well also for
energy-level statistics and gives a new insight into the
connection between the statistical properties of eigen-
states and those of the eigenvalues.

Our starting point is the semicircle law (4), which
holds for sufficiently large level density [11-13] p>>1.
The finite energy width of the semicircle distribution,
AE =4vV2b, encompasses the whole spectrum and
therefore allows for an estimate of the maximum number
I, of unperturbed states that can be coupled by the per-
turbation

1, =cpAE=4cpvV2b , (5)

where the numerical factor ¢ (of the order one) depends
on how [/, is practically measured (see below). The physi-
cal meaning of /, is that of a maximal localization length
of eigenstates in a number of unperturbed levels. We em-
phasize that /, is determined by the “energy shell” AE
and makes no reference to any finite matrix size; for this
reason [, will be called transverse localization length
(across the energy shell), see [14]. The actual localization
length /, however, is, in general, different. It depends on
the various parameters in a complicated way [9,10], and
in the limit case p= o we have /=1 ~b?[15,16].

The key point in our approach is that all global proper-
ties of eigenfunctions are described by one localization pa-
rameter:

- L
Bloc— ll ’ (6)

which is expected to obey a scaling law, i.e., to depend
only on the ratio of the two characteristic lengths / , and
I 1

p3/2

Bloczﬁloc(}‘) ’ A'————Il_:a pv ™
with some numerical factor @ ~1. The scaling parameter
A may also be called ergodicity parameter, because when
it is large, the localization length approaches its maximal
value /|, which means that the eigenfunctions become er-
godic, i.e., completely delocalized within the energy shell.
In the opposite case, when I <!, we speak of longitudinal
localization (along the layer) [14].

The case of finite matrices of size N has already been
investigated in some detail. In that case, N is another
characteristic length and therefore, besides A, one more
scaling parameter appears:

b2
A=Yy N (8)

In this case, the statistical properties have been conjec-
tured to depend on both parameters A and Ay
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[Bioc=Bioc(A,Ax)] [9,10,15]. This was confirmed by nu-
merical experiments [9,10,17], both for spectral statistics
and for localization properties. In particular, for homo-
geneous (p=o) BRM’s the parameter A, alone is
sufficient; moreover, the scaling law was numerically
found [16,18] to be (with y = 1.4) [19]

Bioc(Ay) = )

Y S
1+Ay
Recently, an analytical proof of this scaling law was
given in [20].

Finite matrices are just an approximation for real con-
servative Hamiltonians; being interested in the latter,
only those statistical properties that do not depend on
finite truncation are physically relevant. Therefore, we
are addressing here the case of infinite matrices. In nu-
merical studies the matrices are obviously of finite size N,
but some data from [9,10] pertain to large matrices, for
which A >>A and the finite (but large) size of the matrix
is not relevant. We have therefore used these very data in
order to investigate our scaling assumption (7), which we
claim to hold for infinite Hamiltonian matrices.
Specifically, we have taken from [9,10] data for the
dependence of the localization length / on the model pa-
rameters.

The definition of / that was used in numerical studies
was that of “‘entropy localization length,” namely,

I=Nexp({H)—Hgog) » (10)
where H is the “entropy” of an eigenstate u,,:

H=— |u,|’In|u,|? (11)

and (H ) is an average over all eigenvectors from an en-
semble of random matrices with the same N,p,b,v. The
normalization used in the expression (11) is such that in
the limit case of full random matrices of size N the locali-
zation length [/ is equal to N [18]. To this end, the factor
exp(—Hgog) was introduced, which is related to the
average entropy of eigenstates taken from the Gaussian
orthogonal ensemble (GOE). The definition [(10) and
(11)] has the same meaning as an effective number of un-
perturbed eigenstates covered, on average, by a single
eigenvector.

In order to check the scaling (7) and to find the form of
the scaling function B,,.(A), one has to investigate the
dependence of the localization length on the various pa-
rameters. Actually, the scaling (7) would imply that this
dependence has the form

I(x)=b%f(x), (12)

where x =A/a and f(x) is related to the scaling function
Bloe Via Bioe=cg 'xf(x) with ¢, =lim, _, ,xf(x). We have
therefore analyzed the behavior of xf(x)=xb "%l(x) as a
function of x.

Data [9], and additional data kindly provided by M.
Feingold, show that on increasing x at fixed b =3-9, the
product xf(x) first increases towards a maximum value
in the range 4.4-5.5, and then decreases approximately as
1/x. In the latter region, perturbation theory is valid
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FIG. 1. Dependence of the localization (squares) and repul-
sion [dots for g and circles for B (16)] parameters on the ergodi-
city parameter A as compared to the simple exponential scaling
(14) (solid line): the rms deviation for B,,.—f is 0.7%.

[11,13] and there is no scaling of the form (7). Being
mainly interested in nonperturbative effects, we have re-
stricted ourselves to values of x below the maximum of
xf(x). This range is approximately defined [11] by the
condition x <x,, where

b _pv
x, Vb 0.3. (13)

The quantity b/x is a sort of perturbation parameter,
giving the ratio of the rms perturbation (~vVv'b) to the
full detuning (~b /p). The same quantity can also be in-
terpreted as the ratio /, /b of the maximal (transverse) lo-
calization length to the number of directly coupled un-
perturbed states.

As b increases, the border x, also increases, and the
maximum of xf(x) becomes broad and flat; thus the per-
turbative region shifts to higher and higher values of x,
and in the limit it disappears. Therefore, in order to
study the asymptotic behavior for large b, one has to con-
sider the region x <x, only.

A detailed processing of the data in the region x <x,
yields evidence of a scaling behavior of the form (7), with
the scaling function (see Fig. 1),

3loc(x)=#z1—exp<—x)zﬁo(x) , (14)
0

where f3; is defined by the last equality. The parameter c,
is in principle defined as the limit of xf(x) as x — o, but
we have instead determined it as a fitting parameter.
Indeed, in order to directly find ¢, as the limit value of
xf(x), a long plateau is needed, and this requires new
data for larger b than available. For the largest b =9, the
mean value of xf(x) on the plateau (which includes only
seven points) is 5.42, while the value of ¢, obtained from
the fitting (see Fig. 1) is ¢q=5.29. To suppress fluctua-
tions in numerical data for large A we used the so-called
moving window averaging over six neighboring points. A
least-squares fit gives c;=5.29, a =0.216 with a rms de-
viation of 6%. We would like to stress that the scaling
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(14) is quite different from (9) found for finite homogene-
ous BRM’s. We also remark that our scaling theory
leads, in particular, to Eq. (12), which was also suggested
in [9,15] on the grounds of different arguments.

Although the agreement between numerical data and
the scaling law (14) shown in Fig. 1 is overall quite good,
there is also a small systematic deviation. This deviation
Bioc —Bo can be substantially reduced by a slight change
in the scaling (14), namely,

BO(A)HB,(?»):1—exp(-—7»+,u,?»2—v) , (15)

with ©£=0.039, v=0.055 and a close value of a =0.226
(cp=5.29 as before). Using the latter parameter values,
the numerical factor y =acy~=1.2 is also close to that
previously found in different models [16]. The factor ¢ in
Eq. (5) is equal to 0.94, which corresponds to the
definition [(10) and (11)] of localization length used in all
the above-mentioned numerical experiments.

We now turn to the relation of the above-discussed glo-
bal properties of the eigenfunctions to the statistical
properties of the energy spectrum. A most widely used
quantity for the description of the latter properties is the
repulsion parameter for neighboring levels [7]. To deter-
mine this parameter one needs to compare numerical
data with some analytical expression for the distribution
of level spacings. In [10] this was done for the model (1)
by using the so-called Brody distribution, which depends
on one fitting parameter q. We used instead a different
theoretical distribution, which appears more physically
meaningful in the analysis of intermediate statistics
caused by localization effects [18]. This distribution also
depends on one spectral parameter 3, which is approxi-
mately related to the Brody parameter g [21] in the fol-
lowing way:

B=0.654¢g +0.411q2% . (16)

This relation was obtained by a least-squares fitting of
one distribution to the other.

In previous studies [18,22] of dynamical models it was
conjectured and numerically supported that the localiza-
tion parameter (3, was close to the repulsion parameter
B. In the present case, this conjecture is fully supported
by numerical data, see Fig. 1. We emphasize that, in
spite of some statistically significant deviations of both 8
and B, from the simple exponential scaling (14), the
difference ;. — B remains well within the range of statist-
ical fluctuations in the whole range of available data for
q(A). The rms fluctuations of (B,,.—B)/(1—p) are about
2% only. This in our opinion clearly indicates that the
parameter 8 is much more suitable than the Brody pa-
rameter for the description of statistical properties of
quantum chaos.

It would be very interesting to extend numerical exper-
iments [9,10] to the region where perturbation theory be-
gins to work, in order to follow the transition to the un-
perturbed system as represented by the diagonal matrix
elements. Also, it is not completely clear whether the
present results remain unchanged, with a different statis-
tics of the diagonal matrix elements in the model (1), in
particular, for a Poissonian statistics. Most likely, they
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do, but a direct check would certainly be desirable.

In conclusion, we have provided evidence for a scaling
law that holds for infinite BRM’s of the form (1); besides
that, we have shown that for this model the spectral pa-
rameter S and the localization parameter B, are surpris-
ingly close. The latter striking result is still waiting a
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theoretical explanation.

We most gratefully thank M. Feingold, who supplied
us with a great deal of published data and unpublished
data of his own.

[1] E. Wigner, Ann. Math. 62, 548 (1955); 65, 203 (1957).

[2] A. Lane, R. Thomas, and E. Wigner, Phys. Rev. 98, 693
(1955).

[3] D. Cohen, Phys. Rev. A 44, 2292 (1991); T. Dittrich and
U. Smilansky, Nonlinearity 4, 59 (1991).

[4] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky,
Physica D 33, 77 (1988).

[5] M. Kus, M. Lewenstein, and F. Haake, Phys. Rev. A 44,
2800 (1991); G. Casati and V. L. Girko, Rand. Oper.
Stoch. Egs. 1, 1 (1992); S. A. Molchanov, L. A. Pastur, A.
M. Khorunzhy, Teor. Mat. Fiz. 90, 163 (1992); M.
Feingold, Europhys. Lett. 17, 97 (1992).

[6] E. Wigner, Ann. Math. 67, 325 (1958).

[7] Statistical Theory of Spectra: Fluctuations, edited by C. E.
Porter (Academic New York, 1965); M. L. Mehta, Ran-
dom Matrices (Academic, New York, 1967); T. A. Brody,
J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S.
M. Wong, Rev. Mod. Phys. 53, 385 (1981).

[8] T. Seligman, J. J. M. Verbaarschot, and M. R. Zirnbauer,
Phys. Rev. Lett. 53, 215 (1985); M. Feingold, D. M.
Leitner, and O. Piro, Phys. Rev. A 39, 6507 (1989).

[9] M. Wilkinson, M. Feingold, and D. Leitner, J. Phys. A 24,
175 (1991).

[10] M. Feingold, D. Leitner, and M. Wilkinson, Phys. Rev.
Lett. 66, 986 (1991).

[11] M. Feingold, in Quantum Chaos— Quantum Measure-
ment, edited by P. Cvitanovic, I. Percival, and A. Wirzba
(Kluwer, Dordrecht, 1992), p. 167.

[12] G. Casati and V. L. Girko, Random Oper. Stochastic
Equations 1, 15 (1993).

[13] D. M. Leitner and M. Feingold (unpublished).

[14] B. V. Chirikov (unpublished).

[15] Ya. V. Fyodorov and A. D. Mirlin, Phys. Rev. Lett. 67,
2405 (1991).

[16] G. Casati, F. M. Izrailev, and L. Molinari, Phys. Rev.
Lett. 64, 1851 (1990); G. Casati, I. Guarneri, F. M.
Izrailev, and R. Scharf, Phys. Rev. Lett. 64, 5 (1990); G.
Casati, S. Fishman, I. Guarneri, F. M. Izrailev, and L.
Molinari, J. Phys.: Condens. Matter 4, 149 (1992).

[17] A. Gioletta, M. Feingold, F. M. Izrailev, and L. Molinari,
Phys. Rev. Lett. 70, 2936 (1993).

[18] F. M. Izrailev, Phys. Rep. 196, 299 (1990).

[19] Actually, due to numerical limitation, the scaling (9) was
numerically proved in the region Ay S 14.

[20] Ya. V. Fyodorov and A. D. Mirlin, Phys. Rev. Lett. 69,
1093 (1992).

[21] G. Casati, F. M. Izrailev, and L. Molinari, J. Phys. A 24,
4755 (1991).

[22] F. M. Izrailev, J. Phys. A 22, 865 (1989).



